

MMG BASIC COMPILER

by Special Software System

(C) 1984 MMG Micro Software

TABLE OF CONTENTS

Introduction..1
Getting Started.......................................2
 For Use With One Disk Drive........................2
 For Use With Two Disk Drives.......................3
Cmpiling Your Program.................................3
How the MG BASIC COMPILER Works.......................4
 First Pass...4
PASS 2 and PASS 3.....................................5
Line Reference Map....................................5
RUN Program...6
Using DOS...7
 Loading the MMG BASIC COMPILER from DOS............7
Technical Notes.......................................7
 Integer Arithmetric Option.........................7
 The Use of COM Variables...........................9
 Compiler Files.....................................9
 Assembly Language Pseudo-ops......................11
Compiler Errors......................................11
 Programing Errors.................................12
 Compile Time Errors...............................13
 Run Time Errors...................................15
 An Example of a Run Time Error....................16
Table of Run Time Errors.............................18
Optimizing Your BASIC Program........................19
 Timing Considerations.............................19
 How to Produce Smaller Compiled Programs..........19
Use With Double Density..............................28
Commands Not Recognized by the Compiler..............21
Memory Map...21
Run Time Library Memory Usage........................23
Internat Numeric Representation......................24
 Floating Point Format.............................24
 Integer Format....................................24
Commercial Satt of Compiled Programs...24

MMG BASIC COMPILER page 1

MMG BASIC COMPILER

(c) 1984 MMG Micro Software

INRODUCTION

Congratulations! You have in your hands one of the most powerful
and versatile tools available for your ATARI computer,
the MMG BASIC COMPILER. As you know BASIC is an interpreted
language, and each time you run a BASIC program, your ATARI
converts your program into machine language, the language of ones
and zeros. However, as each line is translated and executed, the
machine language code which is generated is thrown away, so each
time you run your program, the translation must be done again.
This results in a program which is easy to write and change, but is
very slowly executed. Until now if you wanted FAST programs,
you had to learn to program in assembly language.

Now you can write lightning-fast programs without having to
learn a new language, with the MMG BASIC COMPILER. Write and
debug your programs just as you always have, and then convert
them to the fastest possible code, true machine language. No
knowledge of assembly or machine language is required! Since the
MMG BASIC COMPILER offers the option of using either integer
or floating point arithmetic, it is well suited for both
entertainment and business applications. In fact, several
arcade-type games currently on the market were originally written
in BASIC, and compiled using the MMG BASIC COMPILER for
speed.

The MMG BASIC COMPILER is a three-pass compiler which
generates true 6502 machine language code. PASS 1 converts your
BASIC program into assembly language files on your disk, The
next two passes assemble these files into machine language, which
is then saved on your disk as a file which can be loaded and run
from DOS or which can be named AUTORUN.SYS, and will then
automatically run whenever that disk is booted.

Since the assembly language files produced can be stored on
your disk, the advanced assembly language programmer can utilize
these with other assembler files, or modify them as appropriate.

MMG BASIC COMPILER page 2

GETTING STARTED

Your MMG BASIC COMPILER disk contains the following files:

DOS.SYS
DUP.SYS
AUTORUN.SYS - Displays the title screen
CMP.OBJ - The MMG BASIC COMPILER itself, used in PASS I
ASM.OBJ - The assembler, used in PASSes 2 anti 3
SYSEQU.ABC - The System Equates library
SYSLIB.FP - The Floating Point library
SYSLIB.INT - The Integer library

The master MMG BASIC COMPILER disk has a write protect tab in

place on it, and this should never be removed. Removing this
write protect tab voids your warranty!

To begin using your MMG BASIC COMPILER check to be sure that
all cartridges have been removed from your ATARI computer.
Turn on your disk drive, and when the busy light goes out, place
the MMG BASIC COMPILER disk in your drive, and securely close
the door of your drive. Turn on your TV or monitor, and then turn
on your ATARI computer. XL computers owners must hold down the
OPTION key while turning on their computers. The program
will boot, and you'll see the title page appear on your screen
shortly. If you forgot to remove the BASIC cartridge or if you
forgot to hold down the OPTION key of your XL computer, the
message "REMOVE CARTRIDGES AND REBOOT" will appear
instead of the title page, and you'll need to reboot your system.

FOR USE WITH ONE DISK DRIVE

Press the letter "D" for DOS when the title page appears.
After the DOS 2.0S menu appears, remove the MMG BASIC COMPILER
master disk from your drive, and insert a new disk.
Format this disk using option F, and then copy all of the system
files from your master disk to this new disk. This disk will not be
functional without the master disk, but should be used during
compilations. After you have made your backup copy, place the
original master disk in your drive, and reboot the system.

MMG BASIC COMPILER page 3

FOR USE WITH TWO DISK DRIVES

After the title page appears, choose the letter "D" for DOS,
and wait until the familiar DOS 2.0S menu appears. Place a blank,
formatted disk in drive #2, or format one at this time. Then use
the "C" option of DOS to copy each of the files from your master
MMG BASIC COMPILER disk in drive #1 to the copy in drive #2.

This disk will not be functional without the master disk, but will
be used during the compilation. When the copy is complete,
transfer the BASIC program you want to compile onto this disk,
and then reboot the system. When the title page reappears,
replace your master disk with a blank, formatted disk, and place
the copy you just made into drive #2.

COMPILING YOUR PROGRAM

Please note that there are several restrictions on your BASIC
program (although far fewer than with any other compiler). If you
have a problem compiling your program, or if your program fails to
work properly once compiled, please read the remainder of this
manual to discover the problem and the solution.

If you have only one disk drive, it will be necessary for you to
periodically swap your backup master disk with the disk containing
your BASIC program. The MMG BASIC COMPILER will prompt you
each time this is necessary. Depending on the size of your BASIC
program, a few of these swaps can be avoided by copying the
appropriate SYSLIB file (.INT or .FP) onto the disk with your
BASIC program, along with SYSEQU.ABC and ASM.OBJ. However,
if your BASIC program is too large, there may not be enough room
on the disk for these files, your BASIC program, and the
assembler files produced, in which case, an ERROR 162-DISK
FULL will occur, and you'll need to begin again. For those with
two disk drives, all disk swapping has been eliminated.

At the title screen simply press "C" to load the MMG BASIC
COMPILER. When it is loaded, you will be prompted to insert your
BASIC program work disk, and then to type your BASIC program
file name. If you want a directory of the disk in drive #1 before
answering, just type a RETURN here. Otherwise, type the entire
name of the BASIC program you want to compile, and press
RETURN. For example, you might type:

D:MYPROG.BAS or D2:GAME

MMG BASIC COMPILER page 4

followed by a RETURN. You will then be asked for the name of
the object file, which is the name you want to give the machine
language program the MMG BASIC COMPILER will create for you.
A good convention to follow is to name your BASIC program with
an extension of .BAS, and your object file with an extension of
.OBJ, but any name will do. Be sure, however, that it's different
from your BASIC program' Examples are:

D:MYPROG.OBJ or D2:GAME.OBJ

followed by a RETURN. If the program you name as your BASIC
program is, in fact not a BASIC program, then the MMG BASIC
COMPILER will tell you "FILE NOT BASIC" and give you a chance
to enter a different name.

After you enter both file names, you will be asked whether to
use integer or floating point arithmetic. If you want integer,
press I and RETURN; if you want floating point, choose F and
RETURN. Maximum speed of execution is obtained by choosing the
integer option, but this limits the arithmetic to be used. Please
read the remainder of this manual for a further discussion of
these choices. Once you have choosen integer or floating point
arithmetic, your program will begin to be compiled.

HOW THE MMG BASIC COMPILER WORKS
FIRST PASS

As each line of your BASIC program is compiled, the MMG

BASIC COMPILER prints that line number to the screen, so that
you can follow the course of the compilation. At the same time, it
is creating disk files named ASSEM.SGA ASSEM.SGB ASSEM.SGC,
and so on. When the first pass is completed, an END-OF-PASS1
message will be written on the screen, and your program will have
been entirely converted from BASIC to assembly language. At this
point, we've half completed our conversion to machine language.

At this time, the message:

INSERT COMPILER DISK INTO DRIVE #1
THEN PRESS RETURN

will be displayed for single drive systems. Do as instructed to
continue the compilation. These and further prompts are displayed
only when the MMG BASIC COMPILER cannot find the appropriate
file. With two drives, you'll never see these prompts. Even with

MMG BASIC COMPILER page 5

one drive, if you've transferred the files from your master disk to
the disk containing your BASIC program, you won't need to swap
disks either.

If the SYSTEM RESET key is pressed during the first pass of
the compiler, the program will return to the beginning of PASS 1.

PASS 2 and PASS 3

After compilation to assembly language, the MMG BASIC
COMPILER will load the assembler to convert these files to
executable machine language. This process takes two passes,
PASS 2 and PASS 3. The stage of this conversion will be printed
to the screen, and the cursor will blink in the upper left corner of
the screen to let you know that the assembly is proceeding.

At any time the assembler can't find a file it needs, it will
print a message similar to the following to the screen:

/ASM/ PASS_2

Can't find file ->D:ASSEM.SGA
Please insert Correct Disk

PRESS ANY KEY TO CONTINUE

When you have inserted the appropriate disk, press any
non-function key to continue the assembly.

Pressing the SYSTEM RESET key at any time past PASS 1
aborts the assembly process and returns control to DOS. After
PASS 3 is complete, your BASIC program has been translated to
machine language and saved to your disk in runnable form with the
name that you originally selected. The screen will then display
your three options:

Print line map
Run program
DOS

LINE REFERENCE MAP

The line reference map is a tool for programmers who want to
know where the machine language code from a particular line of
their BASIC program resides in memory. In addition, the line
number 99999 has the address of the last memory location used by
the compiled program, so it's easy to determine exactly how large
the final version is. Press P if you want to see the reference map.

MMG BASIC COMPILER page 6

You may then choose to see it on your screen or printer, or to have
it written to your disk. The prompt looKs like this:

To:

Printer
Screen
Disk

Press the appropriate letter and RETURN. Remember that CTRL-1
will start and stop the scrolling on the display if the screen
option is chosen. lf you choose disk, you will be prompted for the
filename as follows:

DEVICE:FILENAME?->

Type the drive number, and give the map a name, such as:

D2:GAME.MAP

and press RETURN, and the map will be written to the disk. Once
the map has been written to the screen, printer or disk, the
"Select Option" prompt will reappear.

RUN PROGRAN

To run your newly compiled program, simply type R and
RETURN. When it is finished running, the message "BASIC exit"
will be displayed, and then the message:

?Run address>

will appear. You may now rerun the program from a specific
decimal address, by typing the address and pressing RETURN, or
you may rerun the entire program by simply pressing RETURN, or
you can type DOS and press RETURN to return to DOS.

Note that your compiled program can also be run from DOS.
Simply choose the L option of DOS, and your program will
automatically start when it has completely loaded. Alternatively,
you may name your compiled program AUTORUN.SYS, and if you
have the DOS files on that disk, simply turning on your computer
with that disk in place will cause your program to load and run,
without BASIC. You may go directly to DOS after your program
has been compiled by typing D from the "Select Option" prompt.

MMG BASIC COMPILER page 7

USING DOS

To save time and reduce the number of disk swaps that you'll
need to do, you can transfer a number of the MMG BASIC
COMPILER support files and the assembler to the disk containing your
BASIC program. The only caution, mentioned above, is that if
your BASIC program is large, there may not be enough room on the
disk for the assembly language files and your BASIC program with
these support files. The files to transfer are SYSLIB.INT if you
are using integer arithmetic er SYSLIB.FP if you choose floating
point, SYSEQU.ABC, and the assembler, ASM.OBJ (see page 9).

To transfer these using one disk drive, from the DOS menu
choose option O (DUPLICATE FILE), and follow the prompts.
Using two disk drives, it's faster to use option C (COPY FILE).

LOADING THE MMG BASIC COMPILER FROM DOS

The MMG BASIC COMPILER may be loaded using the L option
of DOS. At the prompt:

LOAD FROM WHAT FILE?

type CMP.OBJ, and press RETURN. From this point on, follow the
same instructions as for booting the MMG BASIC COMPILER disk.

TECHNICAL NOTES
INTEGER ARITHMETIC OPTION

In your ATARI BASIC program, all arithmetic is done using the

floating point system of the ATARI. That is, numbers such as
1,245,645 or 1.2543 or 0.4689 are permitted. Integer arithmutic
permits only integers, that is, whole numbers, between -32768 and
32767. Therefore, if you select integer arithmetic at compiling
time, the MMG BASIC COMPILER inserts a copy of the integer
run-time library into the compiled program. Since integer
arithmetic by definition cannot support very large or fractional
numbers, you should be aware that there are a number of BASIC
commands which cannot be correctly executed using integer
arithmetic. These include COS, SIN, CLOG, LOG, EXP and ATAN,
all of which produce fractional numbers.

Furthermore, the BASIC command RND(0) produces a random
number between 0 and 1. Integer arithmetic cannot support this

MMG BASIC COMPILER page 8

range, since in integer arithmetic, the number must be either 0 or 1.
To solve this Problem, the MMG BASIC COMPILER introduces a new
function for random numbers. Simply insert any integer (or a variable
which evaluates to an integer) within the parenthesis following the
RND call, and the integer package of the MMG BASIC COMPILER will
return a random integer between 0 and that number minus one.
For instance, to produce a random number between 0 and 125, the
statement:

X=RND(126)

will place this number in a variable called X.

Since integer arithmetic can only handle (cleverly enough)
integers, please be sure that your BASIC program contains no
fractional numbers, particularly constants such as 1.5, or 3.14159,
or 0.25. Although your compiled program will run, these numbers will
be converted to integers, and the results of your program will not be
the same as the results of your BASIC program.

Note that the square root of a number, obtained with the
BASIC command SQR(#), frequently results in a fractional answer. If
you choose integer arithmetic, the answer obtained using this
function will be the largest integer which, when squared, is equal to
or less than your original number. This may NOT be an exact square
root. For instance, in BASIC, the square root of 6 is 2.449499...,
and this number squared is very close to 6. Using integer arithmetic,
the square root of 6 becomes 2, and squaring this yields 4, a far cry
from 6.

Finally, although integer arithmetic can only generate numbers
between -32768 and 32767, there is a case in which you may use
numbers outside of this range. This occurs with memory addresses
for PEEKs and POKEs. For instance, to move player #0 harizontally,
you may still POKE his horizontal Position as follows:

POKE 53248,XPOS

Similarly, to determine if any of the console buttons OPTION, SELECT
or START have been pressed, you may still use the statement:

X=PEEK(53279)

You may not, however, correctly use a statement such as:

PRINT 53279

MMG BASIC COMPILER page 9

since this will produce -12257 (53279-65536).
It is important to point out that all of the limitations

discussed in this section are not limitations of the MMG BASIC
COMPILER, but rather are limitations of integer arithmetic. They
can be avoided by simply choosing the floating point option at the
time of compiling our BASIC program, if any of these functions
are critical to the correct functioning of your program.

THE USE OF COM VARIABLES

The ATARI offers two types of statements to be used for
dimensioning variables and strings. The first, and by far the most
common, is the DIM statement. However, it also supports the
COM statement and so does the MMG BASIC COMPILER.

The COM statement is idenlical in use to the DIM statement.
For example, to reserve space 200 characters lang for A$, either

DIM A$(200) or COM A$(200)

would work. The major difference between these two statements
comes into play when programs are chained together; that is, when
the first program has a statement in it like:

RUN "D:PROGRAM2"

this case, of course, any variables dimensioned using the DIM
statement would be cleared before the second program began
execution.

Sometimes, however, it is useful to retain the values of a
number of variables from program to program. In this case, simply
include the same COM statements in both programs, and the values
assigned in the first program to these variables will be retained
in the second. For instance, if you want A$ and the array B to
retain their values in PROGRAM2, put the following line in both
programs:

10 COM A$(500),B(25)

COMPILER FILES

If you only have one disk drive, obviously all files must reside
in drive #I, and the program will prompt you to swap disks at the

MMG BASIC COMPILER page 10

appropriate times. If you have two disk drives, the MMG BASIC
COMPILER will search both drives to find the files that it needs.
However, the assembler working files will always be written to
drive #1. Therefore, to maximize the use of your disk space, your
BASIC and object Code files, as well as all of the system files and
compiler files, should reside on drive #2, reserving drive #1
exclusively for the assembler files.

The assembler files (ASSEM.SGA, ASSEM.SGB, etc.) require
approyimately five times as much disk storage as the BASIC
program, although the final object code file, your runnable machine
language program, should be roughly the same size as your BASIC
program (not counting the run-time library). Therefore, you'll
need a disk with five times as many free sectors as your BASIC
program, so the largest program you can compile using only one
disk drive is a little less than 120 sectors, although this depends
on the nature of the program. Much larger programs have
successfully been compiled on a single drive.

To maximize disk utilization, the MMG BASIC COMPILER has
incorporated an optional command for retaining or deleting the
assembler files as the program is assembled. If your BASIC
program does NOT contain a LIST statement, then the assembler
files will be deleted during PASS 3, while your object code file is
being written. In other words, PASS 3 will make room on an
otherwise full disk for your object code, by erasing the assembly
language source code files as it is finished with each of them. If
you don't need this extra space and want to retain the assembly
language source code files, just include the LIST command
anywhere within your BASIC program. The LIST command was
chosen because it is a command which has no place in a machine
language program; listing such a program will produce only garbage
on the screen, instead of the normal BASIC code. A recommended
approach is to add the line:

 32767 LIST

to the end of your program.

MMG BASIC COMPILER page 11

ASSEMBLY LANGUAGE PSEUDO-OPS

If you want to modify the assembly language files produced by
the MMG BASIC COMPILER, you should be aware of the following
statements recognized by the assembler (ASM.OBJ):

.END - ends the assembly
.FILE - chains two or more files in an assembly
= - defines a symbol
.BYTE - defines bytes of data stored in memory
.WORD - defines address constants
.DBYTE -defines word oriented data in memory
>-defines the high byte of a number
<-defines the low byte of a number

COMPILER ERRORS

These are errors that occur during the compilation of a BASIC
program, due either to errors in the BASIC program itsef or due
to ATARI system errors. These are to be cantrasted with errors
that occur while running a compiled program, which are called
run-time errors.

SYSTEM ERRORS

All system errors will be displayed with the standard ATARI
error number. Please consult your BASIC or ATARI manual for a
more complete description of these. In addition to these, the
following system errors may also occur:

SYSTEM ERROR-CAN'T RUN ASSEMBLER
COMPILATION ABORTED
PRESS RETURN TO CONTINUE

This means that the MMG BASIC COMPILER has encountered a bad
ASM.OBJ file. To solve this Problem, recopy this file from your
master disk or a backup.

BAD FREE TEMP
COMPILATION ABORTED
PRESS RETURN TO CONTINUE

This means that there is an internal compiler inconsistency. To

MMG BASIC COMPILER page 12

solve this, reboot and recompile.

BAD INPUT FRON BASIC FILE
TOKEN = xxx
COMPILATION ADORTED
PRESS RETURN TO CONTINUE

This means that the MMG BASIC COMPILER has encountered an
unexpected character in the BASIC program. This may be caused
by a damaged disk. Try to execute the program from BASIC. If it
works correctly, perform the following procedure:

LIST "D:TEMP"
NEW
ENTER "D:TEMP"
SAVE "D:FILENAME"

and reboot the compiler to try again.

If any of these errors occur, place any disk containing the file
DUP.SYS in drive #1, and press RETURN, to relinquish control to
DOS.

PROGRAMMING ERRORS

If your BASIC program has any of several errors in it
(discussed below), the MMG BASIC COMPILER will display the
error message, and then the lines:

SKIPPING STATEMENT
CONTINUE OR ABORT (C/A)?

If you press C, the compilation continues, thus allowing all
possible programming errors in the BASIC program to be detected.
The MMG BASIC COMPILER simply skips the statement with the
error, and continues the compilation at the next BASIC statement.
After compiling the whole program, the message:

X ERROR(S) DETECTED

will be displayed if any errors were detected, where X is the total
number of errors. Since your program won't run anyway, the
compiler stops here. Fix the BASIC program and then reboot the
MMG BASIC COMPILER to recompile the corrected program.

If you press A in response to the CONTINUE OR ABORT
question, you will return to the DOS menu.

MMG BASIC COMPILER page 13

COMPILE TIME ERRORS

ILLEGALLY PLACED STATEMENT

Cause: The compiler has encountered a COM Statement after
non-COM statements.
Solution: Move all COM statements to lines numbered lower than
all other non-COM statements.

ILLEGAL NEXT

Cause: A NEXT is trying to increment a loop variable which does
not match the variable in the corresponding FOR statement, such
as FOR I=1 TO 10:NEXT J.
Solution: Correct the loop variable.

DYNAMIC DIN NOT ALLOWED

Cause: A DIN or COM Statement must use constants, not
variables, to allocate string and array storage. Statements such
as DIM X(A) or DIM A$(X) are not allowed.
Solution: Replace the variables with constants.

NEXT WITHOUT FOR

Cause: The compiler has encountered a NEXT statement without a
matching FOR Statement.
Solution: Remove the NEXT or insert an appropriate FOR.

RE-DIMENSION ERROR

Cause: A string or array is dimensioned more than once.
Solution: Dimension each string orarra, only once.

SYNTAX ERROR

Cause: There is a misspelling, a missing comma, orother error in
your BASIC program.
Solution: Correct your BASIC program and recompile.

CAN'T COMPILE STATEMENT

Cause: The BASIC program contains a Statement not supported by
the compiler, such as LOAD.
Solution: Remove such statements.

MMG BASIC COMPILER page 14

UNDIMENSIONED ARRAY

Cause: The compiler has encountered a statement containing an
array or string before ist DIM or COM statement.
Solution: Move the DIM or COM statement to a line number lower than
all lines which reference the array or string.

UNDEFINED LINE NUMBERS

Undefined line numbers are detected during PASS 3 by the
assembler For example, if your BASIC program contains the
following line:

100 GOTO 1000

and there is no line 1000 in your BASIC program, then the
assembler will respond by displaying the incorrect assembler
instruction and the line number which is undefined. For this
example, the display would read:

-->JMP L1000

/ASM/ SYSTEM ERROR
/ASM/ REF: LINE #->1000
/ASHI UNRESOLVED LINE NUMBER
CONTINUE (Y/N)?

JMP L1000 is the assembler instruction and the line number is
1000. The assembler is asking you if you want to continue the
assembly. The first time you compile your program, you should
continue so as to find any other errors, so type Y. The compiled
program will not run correctly with these errors, so be sure to
correct them and recompile before attempting to run.

GOTO/GOSUB VAR OR EXP

Cause: Your BASIC program contains a statement of the form:

GOTO A or GOSUB 1000+X

Solution: Replace these statements by the appropriate GOTO or
GOSUB. Frequently, you can replace such statements by such
lines:

MMG BASIC COMPILER page 15

ON A GOTO 1000,2000,3000
or

ON X GOSUB 1000,1010,1020,1030

ASSEMBLER SYSTEM ERROR

In addition to the normal ATARI system errors, you may see
the message:

SYSTEM ERROR: 255

during assembly. There are two possible causes for this error:
Cause #1: A reference is not defined in the system equates file,
usually because of a damaged file SYSEQU.ABC.
Cause #2: The assembler cannot find the next assembly language
source code file. This usually means that the files have been
damaged since they were created during PASS 1, or that the
compiler itself has been damaged.
Solution: Rerun your compilation after recopying all system files
from either a backup or your master MMG BASIC COMPILER disk.

RUN TIME ERRORS

Running a compiled program may produce anyof the standard
ATARI errors as runtime errors. In your compiled program, the
ATARI BASIC command TRAP will work just like it does in BASIC,
to assist you in debugging your program. Furthermore, PEEK(195)
will return the type of error encountered, just like it does
in BASIC. If an error is encountered which is not TRAPped, or if the
TRAP has been reset like TRAP 40000, then the run time package
in your compiled program will print the address of the incorrect
instruction, and will allow you to resume execution at a given
address when the run time package prompts you with:

?Run address>

This address should be a decimal address corresponding to the
address of a BASIC line number as shown in the line reference map
already discussed. Instead of typing an address, you can also
enter one of the following three options:

Type RETURN to rerun the program from the beginning.

MMG BASIC COMPILER page 16

Type DOS and RETURN to return control to DOS.
Type C and RETURN to continue running the program beginning

from the line where the error cccurred.

AN EXAMPLE OF A RUN TIME ERROR

The following discussion shows how to determine the line
number at which a run time error occurs. You should have a listing
of your BASIC program and a copy of the line reference map. We'll
use the following program as an example:

100 REM
110 PEN TEST RUN TIME ERROR
120 PEN
130 PEN PROGRAM WILL GET AN
140 REM ERROR 11 WHE N l=0
150 REM
160 FOR I=10 TO 0 STEP -1
170 PRINT 10/I
180 NEXT 1
190 END

When this program is run from BASIC, the following output is
produced:

1
1.11111111
1.25
1.42857142
1.66666666
2
2.5
3.33333333
5
10

ERROR- 11 IN LINE 170

READY

MMG BASIC COMPILER page 17

The line reference map produced following the compilation of this
program looks like:

LINE # 100 = 12811
LINE # 110 = 12811
LINE # 120 = 12811
LINE # 130 = 12811
LINE # 140 = 12111
LINE # 150 = 12811
LINE # 160 = 12811
LINE # 170 = 12825
LINE # 180 = 12849
LINE # 190 = 12882
LINE # 99999 = 12918

and shows that the compiled code for line 170, for example, lies
between memory locations 12825 and 12848, inclusive.

Now, when we run the compiled program is executed, the
following display is seen:

1
1.11111111
1.25
1.42857142
1.66666666
2
2.5
3.33333333
5
10
ERROR- 11
Trace:
12840
?Run address>

The compiled program teils you that an error 11 was detected, and
then shows a trace of addresses which show the sequence of
subroutine calls which led to the error. In this case, no
subroutines were called, so the trace just shows the address
12840. Since this address is between the start and end address
for line number 170 from our reference map, we know that line 170
contains the problem,

MMG BASIC COMPILER page 18

TABLE OF RUN TIME ERRORS

ERROR NUMBER DEFINITION
 06 Out of Data
 11 Arithmetic error (overflow or
 divide by zero)
 18 Invalid string character
 128 Break key abort
 129 IOCB already open
 130 Nonexistent device
 131 IOCB write only
 132 Invalid command
 133 Device or file not open
 134 Bad IOCB number
 135 IOCB read only error
 136 End of file
 137 Truncated record
 138 Device timeout
 139 Device NAK
 140 Serial bus error
 141 Cursor out of range
 142 Serial bus data frame overrun
 143 Serial bus data frame checksum error
 144 Device done error
 145 Read after write compare error
 146 Function not implemented
 147 Insufficient RAM
 168 Drive number error
 161 Ton many files apen
 162 Disk full
 163 Unrecoverable system data I/0 error
 164 File number mismatch
 165 File number error
 166 POINT data length error
 167 File locked
 168 Command invalid
 169 Directory full
 170 File not found
 171 POINT invalid

MMG BASIC COMPILER page 19

OPTIMIZING YOUR BASIC
PROGRAM

TIMING CONSIDERATIONS

Many programs require timing loops, either to provide

syrhronization or small pauses during portions of the program.
Since compiled programs run much faster, you should change your
timing parameters using the following information as a guide.
Using the floating point package, your compiled program will run
about three times faster than your original BASIC program,
whereas il you use the integer package the difference in speed is
approximately 15 fold. A better way to implement delays than
using timing loops is to use the ATARI real-time clock, as in the
following example.

100 DELAY=10:GOSUB 500
110 ...
110 ...

111 TIME=PEEK(20)+DELAY
510 IF PEEK(20)<>TIME THEN GOTO
510
520 RETURN

Locations 18, 19, and 20 are the ATARI real-time clock. Location
20 is updated once each jiffy (1/60 of a second). When location 20
goes from 255 to 0, location 19 is incremented by one, so location
19 counts one unit for about each 4.25 minutes. Location 18 is
incremented once for each full cycIe of location 19, and so it
counts one beat for about each 1083 minutes. By writing the
subroutine at line 500 - 520 above to use any of these three
locations, delays of virtually any duration are possible, and will
be the same in BASIC or in machine language, in either integer or
floating point arithmetic.

HOW TO PRODUCE SMALLER COMPILED PROGRAMS

The MMG BASIC COMPILER was designed to produce the
fastest possible machine code, as opposed to the shortest, Most
routines in your BASIC program will take up substantially more
space, in Ihe machine language program than in the original BASIC
program. One type of statement which does not take up more room

MMG BASIC COMPILER page 20

in the final program is the GOSUB statement. Therefore, if you
use subroutines for everything which is repetitious in your BASIC
program, you'll dramatically cut down the size of the final machine
language program produced.

BASIC instructions which take up large blocks of space in the
compiled program include mathematical calculations such as
X*Y+Z, substring expressions, such as A$(I,J), references to
arrays, such as X(I), and FOR NEXT loops with a variable for the
step function, such as FOR I=1 TO 100 STEP B, which takes almost
3 times as much space in the compiled program as the same
statement with STEP 2, for example.

USE WITH DOUBLE DENSITY

If you have at least one true double density disk drive, you can
considerably increase the size of a BASIC program to compile.
This program DOES NOT support the ATARI 1050
density-and-a-half, only true double density drives. To operate
in double density, simply boot up as described above, and select D
from the title page, to go to DOS. Once the DOS menu appears,
use the L option of DOS to load and run a program called:

CHANGE

This program will change the density of your drive(s). Just follow
the prompts of the program, and turn your master disk over at the
time indicated by the CHANGE program. You will then be in double
density, and can load the compiler using the L option of DOS,
loading CMP.OBJ from the double density side of the master disk.

MMG BASIC COMPILER page 21

COMMANDS NOT RECOGNICED

BY THE COMPILER

Several BASIC keywords are not recognized by the MMG BASIC
COMPILER, for obvious reasons. These are:

CONT
CLOAD
CSAVE
ENTER
LOAD
NEW
SAVE

In addition, FOR loops can have only one NEXT statememt.
Finally, GOTO, GOSUB, and RESTORE cannot be followed by a
variable, but must be to constant line numbers.

MEMORY MAP

The system library loads at $2400, and the user code starts at
$3200 and procedes upward. The following diagram outlines the
memory configuration at run time of a program compiled with the
MMG BASIC COMPILER.

MMG BASIC COMPILER page 22

$FFFF________________
 : :
 : OS ROM :
 :______________:
 : :
 : DISPLAY :
 : RAM :
 :______________:<-VEND+FRE(0)=MEMTOP
 : :
 : FREE MEM :
 :______________:<-LINE 99999
 : :
 : TEMPORARY :
 : STORAGE :
 :______________:<-VEND
 : :
 :STRING STORAGE:
 :______________:<-SSEC
 : NUMERIC :
 : STORAGE 1 :
 :_____________ :<-VSEC
 : CONSTANT :
 : STORAGE :
 :______________:<-CSE
 : :
 : DATA STORAGE :
 :______________:<-DSEC
 : :
 : COMPILED :
 : PROGRAM :
 :______________:<-$320A
 : :
 : VEND :
 :______________:<-$3208
 : :
 : SSEC :
 :______________:<-$3206
 : :
 : VSEC :
 :______________:<-$3204
 : :
 : CSEC :
 :______________:<-$3202
 : :
 : DSEC :
 :______________:<-$3200
 : :
 : RUN TIME :
 : PACKAGE :
$2400:______________:
 : :
 : DOS & SYSTEM :
 : WORKSPACE :
 $0:______________:

The compiled program entry paint is at $2400.

MMG BASIC COMPILER page 23

RUN TIME LIBRARY MEMORY
USAGE

ZERO PAGE

HEX DEC. DESCRIPTION
$88 128 REGISTER SAVE AREA
$EI 129 REGISTER SAVE AREA
$82,$83 130,131 GENERAL USE POINTER
$84 132 CURRENT COLOR FOR PLOTS
$85 133 IOCB FOR CURRENT I/0
$86 134 COMMAND NUMBER FOR XIO CALL
$88,$89 136,137 POINTER TO NEXT DATA STATEMENT
$8C,$8D 148,141 STRING POINTER 1
$90,$91 144,145 STRING POINTER 2
$92,$93 146,147 ADDRESS FOR USR CALL
$96,$97 150,151 TRAP VECTOR
$98 152 TAB COUNTER
$99 153 GENERAL USE COUNTER
$9A 154 STACK POINTER SAVE
$9B 155 GENERAL USE FLAG BYTE
$BA,$BB 106,187 STOP ADDRESS OF ERROR
$C3 195 ERROR NUMBER
$C9 291 PRINT TAB WIDTH
$D4-$D9 212-217 PSEUDO REGISTER 0
111-115 214-111 PSEUDO REGISTER 1
$F2 242 FLOATING POINT USAGE
$F3,$F4 243,244 POINTER TO INPUT BUFFER
$FB 251 RADIAN/DEGREE FLAG (0=RAD,6=DEG)
$FC,$FD 252,253 POINTER TO FLOATING POINT NUMBER

NON ZERO PAGE

$480-$4FF 1152-1279 LINE INPUT BUFFER & FILE NAME STORAGE
$508-$57F 1288-1407 FLOATING POINT BUFFER

MMG BASIC COMPILER page 24

INTERNAL NUMERIC
REPRESENTATION.

FLOATING POINT FORMAT

Floating point numbers are stored using the ATARI 0S floating

point format. Each floating point number is stored in six
consecutive bytes. The sign of the number and a 64 excess power
of 100 are stored in the first byte. The following five bytes
contain binary coded decimal digits, two per byte. This gives
10-digit floating point precision.

INTEGER FORMAT

Integers are 16 bits and stored in two consecutive bytes in
memory. The bytes are stored in order of the most significant
byte to the least significant byte. This is the opposite of the
order in which the 6502 processor addresses bytes. This order
was chosen to present a uniform location of the sign bit to the
compiler and run time libraries, thus allowing the compiler to
produce code which is independent of the arithmetic option.

COMMERCIAL SALE OF
COMPILEID PROGRAMS

No royalty fees are required to sell programs compiled with

the MMG BASIC COMPILER. We do require that you place the
following notice in your program documentation:

This program was compiled using the MMG BASIC COMPILER
for the ATARI.

	MMG Basic Compiler
	Intro
	Table of Contents
	Introduction
	Gettig started
	For use with One Disk Drive
	For use with Two Disk Drives

	Compiling your program
	How the MMG BASIC COMPILER Works

