

MMG BASI C COWPI LER

by Special Software System

(O 1984 MM5 M cro Software

TABLE OF CONTENTS

Introduction. 1
Getting Started. 2
For Use Wth One Disk Drive........................ 2
For Use Wth Two Disk Drives....................... 3
Cpiling Your Program 3
How t he MG BASIC COWPILER Works. 4
First Pass. 4
PASS 2 and PASS 3. 5
Line Reference Map. 5
RUN Program e e 6
UsSiNg DOS. . ..o 7
Loadi ng the MMG BASIC COWI LER fromDCS............ 7
Technical Notes............. .. i 7
Integer Arithmetric Option......................... 7
The Use of COM Variables........................... 9
Conpiler Files...... 9
Assenbly Language Pseudo-ops...................... 11
Conpiler ErrorsS. e 11
Programing Errors........... . 12
Conpile Time Errors. 13
Run Time Errors........ ... 15
An Exanple of a Run Tine Error.................... 16
Table of Run Tine Errors.......... 18
Optimzing Your BASIC Programcouvuu... 19
Timng Considerations........... i, 19
How to Produce Snmaller Conpiled Prograns.......... 19
Use Wth Double Density............ 28
Conmands Not Recogni zed by the Conpiler.............. 21
MemDrY MAP. . .o 21
Run Tine Library Menory Usage........................ 23
Internat Numeric Representation...................... 24
Floating Point Format............... 24
Integer FOrmat........... ... 24

Conmercial Satt of Conpiled Programs................. 24

MMG BASI C COWPI LER
(c) 1984 MM5 M cro Software

| NRCDUCTI ON

Congratul ati ons! You have in your hands one of the nost powerful
and versatile tool s avai |l abl e for your ATARI conput er,
the MMG BASIC COWILER. As you know BASIC is an interpreted
| anguage, and each tine you run a BASIC program your ATAR
converts your program into nmachine |anguage, the |anguage of ones
and zeros. However, as each line is translated and executed, the
machi ne | anguage code which is generated is thrown away, so each
time you run your program the translation must be done again.
This results in a program which is easy to wite and change, but is

very slowy executed. Until now if you wanted FAST prograns,
you had to learn to programin assenbly | anguage.
Now you can wite |lightning-fast progranms wthout having to

learn a new |language, wth the MG BASIC COWILER Wite and
debug your prograns just as you always have, and then convert
them to the fastest possible code, true machine |anguage. No
know edge of assenbly or nmachine |anguage is required! Since the
MMG BASIC COWILER offers the option of wusing either integer
or floating point arithnetic, it is well suited for bot h
ent ert ai nment and busi ness appl i cations. I'n fact, sever al
arcade-type ganes currently on the market were originally witten
in BASIC, and conpiled wusing the MG BASIC COWILER for
speed.

The MMG BASIC COWILER is a three-pass conpiler whi ch
generates true 6502 machine |anguage code. PASS 1 converts your
BASIC program into assenbly |anguage files on your disk, The
next two passes assenble these files into nmachine |anguage, which
is then saved on your disk as a file which can be |oaded and run
from DOS or which can be nanmed AUTORUN. SYS, and will then
automatically run whenever that disk is booted.

Since the assenbly |language files produced can be stored on
your disk, the advanced assenbly |anguage progranmer can utilize
these with other assenbler files, or nodify them as appropriate.

MVG BASI C COWPI LER page 1

GETTI NG STARTED

Your MMG BASI C COWPI LER di sk contains the following files:

DCS. SYS

DUP. SYS

AUTORUN. SYS - Displays the title screen

CWP. OBJ - The MMG BASI C COWPI LER itself, used in PASS |
ASM OBJ - The assenbler, used in PASSes 2 anti 3
SYSEQU. ABC - The System Equates library

SYSLIB. FP - The Floating Point library

SYSLIB.INT - The Integer library

The master MMG BASIC COWPILER disk has a wite protect tab in
place on it, and this should never be renpbved. Renobving this
write protect tab voids your warranty!

To begin using your MVG BASIC COWILER check to be sure that
al | cartridges have been renoved from your ATARI conput er.
Turn on your disk drive, and when the busy |ight goes out, place
the MMG BASIC COWILER disk in your drive, and securely close
the door of your drive. Turn on your TV or nonitor, and then turn
on your ATARI conputer. XL conputers owners nust hold down the
OPTION key while turning on their conput ers. The program
will boot, and you'll see the title page appear on your screen
shortly. If you forgot to renove the BASIC cartridge or if you
forgot to hold down the OPTION key of your XL conputer, the
message " REMOVE CARTRI DGES AND REBOOT" will appear
instead of the title page, and you'll need to reboot your system

FOR USE WTH ONE DI SK DRI VE

Press the letter "D' for DOS when the title page appears.
After the DOS 2.0S nenu appears, renmove the MMVG BASIC COWI LER

mast er di sk from your drive, and insert a new disk.
Format this disk using option F, and then copy all of the system
files from your nmaster disk to this new disk. This disk will not be

functional wthout the master disk, but should be wused during
conpilations. After you have nmade your backup copy, place the
original master disk in your drive, and reboot the system

MVG BASI C COWPI LER page 2

FOR USE W TH TWO DI SK DRI VES

After the title page appears, choose the letter "D' for DOCS,
and wait until the famliar DOS 2.0S nmenu appears. Place a blank,
formatted disk in drive #2, or format one at this tine. Then use
the "C'" option of DOS to copy each of the files from your nmaster
MMG BASI C COWPI LER disk in drive #1 to the copy in drive #2.

This disk will not be functional without the master disk, but wll
be used during the conpilation. Wwen the <copy is conplete,
transfer the BASIC program you want to conpile onto this disk,
and then reboot the system \Wen the title page reappears,
replace your master disk with a blank, formatted disk, and place
the copy you just made into drive #2.

COWVPI LI NG YOUR PROGRAM

Pl ease note that there are several restrictions on your BASIC
program (although far fewer than with any other conpiler). If you
have a problem conpiling your program or if your program fails to
work properly once conpiled, please read the renainder of this
manual to discover the problem and the sol ution.

If you have only one disk drive, it will be necessary for you to
periodically swap your backup master disk with the disk containing
your BASIC program The MMG BASIC COWILER will pronmpt you

each time this is necessary. Depending on the size of your BASIC
program a few of these swaps can be avoided by copying the
appropriate SYSLIB file (.INT or .FP) onto the disk wth your

BASI C program along with SYSEQU. ABC and ASM OBJ. However,

if your BASIC program is too large, there may not be enough room
on the disk for these files, your BASIC program and the
assenbler files produced, in which case, an ERROR 162-Dl SK
FULL will occur, and you'll need to begin again. For those wth
two disk drives, all disk swapping has been elim nated.

At the title screen sinply press "C' to load the MVG BASIC
COWI LER. When it is loaded, you wll be pronpted to insert your
BASIC program work disk, and then to type your BASIC program
file name. |f you want a directory of the disk in drive #1 before
answering, just type a RETURN here. Oherwise, type the entire
nane of the BASIC program you want to conpile, and press
RETURN. For exanple, you night type:

D: MYPROG. BAS or D2: GAME

MVG BASI C COWPI LER page 3

followed by a RETURN. You wll then be asked for the name of
the object file, which is the name you want to give the nachine
| anguage program the MG BASIC COWILER wll create for you.
A good convention to follow is to name your BASIC program with
an extension of .BAS, and your object file with an extension of
.0BJ, but any name will do. Be sure, however, that it's different
fromyour BASIC progranml Exanples are:

D: MYPROG. OBJ or D2: GAME. OBJ

followed by a RETURN. |f the program you nanme as your BASIC
program is, in fact not a BASIC program then the MVG BASIC
COWILER wll tell you "FILE NOT BASIC' and give you a chance
to enter a different name.

After you enter both file names, you wll be asked whether to
use integer or floating point arithmetic. If you want integer,
press | and RETURN, if you want floating point, choose F and

RETURN. Maxi mum speed of execution is obtained by choosing the
integer option, but this limts the arithnetic to be used. Please
read the remainder of this manual for a further discussion of
these choices. Once you have choosen integer or floating point
arithmetic, your programw |l begin to be conpiled.

HOW THE MMG BASI C COVPI LER WORKS
FI RST PASS

As each line of your BASIC program is conpiled, the MG
BASIC COWPILER prints that line nunmber to the screen, so that
you can follow the course of the conpilation. At the sane tinme, it
is «creating disk files naned ASSEM SGA ASSEM SGB ASSEM SCC,
and so on. Wen the first pass is conpleted, an END O PASS1
message will be witten on the screen, and your program wll have
been entirely converted from BASIC to assenbly |anguage. At this
point, we've half conpleted our conversion to nachi ne | anguage.

At this time, the nessage:

I NSERT COWPI LER DI SK | NTO DRI VE #1
THEN PRESS RETURN

will be displayed for single drive systens. Do as instructed to
continue the conpilation. These and further pronpts are displayed
only when the MG BASIC COWILER cannot find the appropriate
file. Wth two drives, you'll never see these pronpts. Even with

MVG BASI C COWPI LER page 4

one drive, if you've transferred the files from your master disk to
the disk containing your BASIC program you won't need to swap
di sks either.

If the SYSTEM RESET key is pressed during the first pass of
the conpiler, the programw |l return to the begi nning of PASS 1.

PASS 2 and PASS 3

After conpi | ation to assenbly | anguage, the MG BASIC
COWI LER will load the assembler to «convert these files to
executabl e nmachine | anguage. This process takes two passes,
PASS 2 and PASS 3. The stage of this conversion will be printed
to the screen, and the cursor will blink in the upper left corner of
the screen to let you know that the assenbly is proceeding.

At any tinme the assenbler can't find a file it needs, it wll
print a nessage sinmlar to the following to the screen:

| ASM PASS_2

Can't find file ->D. ASSEM SGA
Pl ease insert Correct Disk

PRESS ANY KEY TO CONTI NUE

When you have inserted t he appropriate di sk, press any
non-function key to continue the assenbly.

Pressing the SYSTEM RESET key at any tinme past PASS 1
aborts the assenbly process and returns control to DOCS. After
PASS 3 is conplete, your BASIC program has been translated to
machi ne | anguage and saved to your disk in runnable form with the
nane that you originally selected. The screen wll then display
your three options:

Print line map
Run program

Dos
LI NE REFERENCE NAP
The line reference map is a tool for programmers who want to
know where the machine |anguage code from a particular line of
their BASIC program resides in nenory. In addition, the Iline

nunber 99999 has the address of the last nmenory |ocation used by
the conpiled program so it's easy to determne exactly how |arge
the final versionis. Press Pif you want to see the reference nap.

MVG BASI C COWPI LER page 5

You may then choose to see it on your screen or printer, or to have
it witten to your disk. The pronpt |ooKs |ike this:

To:

Printer

Screen

Di sk
Press the appropriate letter and RETURN. Renenber that CTRL-1
will start and stop the scrolling on the display if the screen
option is chosen. |If you choose disk, you will be pronpted for the

filename as follows:
DEVI CE: FI LENAME?- >
Type the drive nunber, and give the map a nanme, such as:
D2: GAME. MAP
and press RETURN, and the map will be witten to the disk. Once

the map has been witten to the screen, printer or disk, the
"Sel ect Option" pronpt will reappear.

RUN PROGRAN

To run your new y conpi | ed program simply type R and
RETURN. When it is finished running, the nessage "BASIC exit"
wi || be displayed, and then the nessage:

?Run addr ess>

will appear. You nmay now rerun the program from a specific
decimal address, by typing the address and pressing RETURN, or
you may rerun the entire program by sinply pressing RETURN, or
you can type DOS and press RETURN to return to DOCS.

Note that your conpiled program can also be run from DOCS.
Sinply choose the L option of DOsS, and your program will
automatically start when it has conpletely |oaded. Alternatively,
you nmay name your conpiled program AUTORUN. SYS, and if you
have the DOS files on that disk, sinply turning on your conputer
with that disk in place will cause your program to load and run,
without BASIC. You may go directly to DOS after your program
has been conpiled by typing D fromthe "Sel ect Option" pronpt.

MVG BASI C COWPI LER page 6

USI NG DOS

To save time and reduce the nunber of disk swaps that you'll
need to do, you can transfer a nunmber of the MG BASIC
COWPI LER support files and the assenbler to the disk containing your
BASIC program The only caution, nentioned above, is that if
your BASIC program is large, there nmay not be enough room on the
disk for the assenbly |anguage files and your BASIC program wth
these support files. The files to transfer are SYSLIB.INT if you
are using integer arithnetic er SYSLIB.FP if you choose floating
poi nt, SYSEQU. ABC, and the assenbler, ASM OBJ (see page 9).

To transfer these using one disk drive, from the DOS nenu
choose option O (DUPLICATE FILE), and follow the pronpts.
Using two disk drives, it's faster to use option C (COPY FILE).

LOADI NG THE MMG BASI C COVWPI LER FROM DOS

The MMG BASIC COWILER my be |loaded wusing the L option
of DCS. At the pronpt:

LOAD FROM WHAT FI LE?

type CMP.OBJ, and press RETURN. From this point on, follow the
same instructions as for booting the MG BASI C COWPI LER di sk.

TECHNI CAL NOTES
| NTEGER ARI THVETI C OPTI ON

In your ATARI BASIC program all arithnetic is done using the
floating point system of the ATARI. That is, nunbers such as
1,245,645 or 1.2543 or 0.4689 are permtted. Integer arithnutic
permits only integers, that is, whole nunbers, between -32768 and

32767. Therefore, if you select integer arithmetic at conpiling
time, the MMG BASIC COWILER inserts a copy of the integer
run-time library into the conpi | ed program Si nce i nt eger

arithmetic by definition cannot support very large or fractional
nunbers, you should be aware that there are a nunber of BASIC
comrands whi ch cannot be correctly execut ed usi ng i nt eger
arithmetic. These include COS, SIN, CLOG LOG EXP and ATAN,
all of which produce fractional nunbers.

Furt her nore, the BASIC conmand RND(O) produces a random
nunber between 0 and 1. Integer arithnetic cannot support this

MVG BASI C COWPI LER page 7

range, since in integer arithnetic, the nunber nust be either 0 or 1.
To solve this Problem the MVG BASIC COWPI LER introduces a new
function for random nunbers. Sinply insert any integer (or a variable
which evaluates to an integer) within the parenthesis follow ng the
RND call, and the integer package of the MJVG BASIC COWILER will

return a random i nteger between 0 and that nunber m nus one.
For instance, to produce a random nunber between 0 and 125, the
stat ement :

X=RND(126)
will place this nunmber in a variable called X

Since integer arithmetic can only handle (cleverly enough)
integers, please be sure that your BASIC program contains no
fractional nunbers, particularly constants such as 1.5, or 3.14159,
or 0.25. Although your conpiled programw |l run, these nunbers wll
be converted to integers, and the results of your programw || not be
the sane as the results of your BASIC program

Note that the square root of a nunber, obtained wth the

BASI C command SQR(#), frequently results in a fractional answer. |
you choose integer arithnmetic, the answer obtained wusing this
function will be the largest integer which, when squared, is equal to

or less than your original nunmber. This may NOT be an exact square
root. For instance, in BASIC, the square root of 6 is 2.449499...,
and this nunber squared is very close to 6. Using integer arithnetic,
the square root of 6 becomes 2, and squaring this yields 4, a far cry
from 6.

Finally, although integer arithnmetic can only generate nunbers
between -32768 and 32767, there is a case in which you may use

nunbers outside of this range. This occurs with nenory addr esses
for PEEKs and POKEs. For instance, to nove player #0 harizontally,
you may still POKE his horizontal Position as follows:

POKE 53248, XPOS

Simlarly, to determine if any of the console buttons OPTION, SELECT
or START have been pressed, you may still use the statenent:

X=PEEK(53279)
You may not, however, correctly use a statenent such as:

PRI NT 53279

MVG BASI C COWPI LER page 8

since this will produce -12257 (53279-65536).

It is inportant to point out that all of the Ilimtations
discussed in this section are not limtations of the MG BASIC
COWPI LER, but rather are limtations of integer arithnetic. They
can be avoided by sinply choosing the floating point option at the
time of conpiling our BASIC program if any of these functions
are critical to the correct functioning of your program

THE USE OF COM VARI ABLES

The ATARI offers two types of statements to be wused for
di mensioning variables and strings. The first, and by far the nost

common, is the DM statenent. However, it also supports the
COM st atement and so does the MMG BASI C COWI LER.
The COM statenment is idenlical in use to the D M statenent.

For exanple, to reserve space 200 characters lang for A%, either
DI M A$(200) or COM A$(200)

would work. The major difference between these two statenents
comes into play when prograns are chained together; that is, when
the first programhas a statenent in it like:

RUN " D: PROGRAMR"

this case, of <course, any variables dinmensioned using the DM
statement would be cleared before the second program began
executi on.

Sonetimes, however, it is wuseful to retain the values of a
nunber of variables from program to program |In this case, sinply
include the sane COM statenents in both programs, and the values
assigned in the first program to these variables will be retained
in the second. For instance, if you want A$ and the array B to
retain their values in PROGRAM2, put the following line in both
progr ans:

10 COM A$(500) , B(25)

COWPI LER FI LES

If you only have one disk drive, obviously all files nust reside
in drive #l, and the programw Il pronpt you to swap di sks at the

MVG BASI C COWPI LER page 9

appropriate times. |If you have two disk drives, the MV BASIC
COWI LER will search both drives to find the files that it needs.
However, the assenbler working files wll always be witten to
drive #1. Therefore, to maximze the use of your disk space, your
BASI C and object Code files, as well as all of the system files and
conpiler files, should reside on drive #2, reserving drive #1
exclusively for the assenbler files.

The assenbl er files (ASSEM SGA, ASSEM SGB, etc.) require
approyimately five times as nmuch disk storage as the BASIC
program although the final object code file, your runnable machine
| anguage program should be roughly the sane size as your BASIC
program (not counting the run-time library). Therefore, you'll
need a disk with five times as many free sectors as your BASIC
program so the largest program you can conpile wusing only one
disk drive is a little less than 120 sectors, although this depends
on the nature of the program Much | arger progranms have
successfully been conpiled on a single drive.

To maximze disk utilization, the MMG BASIC COWILER has
incorporated an optional conmand for retaining or deleting the
assenbler files as the program is assenbled. If your BASIC
program does NOT contain a LIST statement, then the assenbler
files will be deleted during PASS 3, while your object code file is
being witten. In other words, PASS 3 wll nmake room on an
otherwise full disk for your object code, by erasing the assenbly
| anguage source code files as it is finished with each of them |If
you don't need this extra space and want to retain the assenbly
| anguage source code files, j ust include the LIST command
anywhere within your BASI C program The LIST comand was
chosen because it is a comand which has no place in a nmachine
| anguage programy listing such a program will produce only garbage
on the screen, instead of the normal BASIC code. A recomended
approach is to add the I|ine:

32767 LI ST

to the end of your program

MVG BASI C COWPI LER page 10

ASSEMBLY LANGUAGE PSEUDO- OPS

If you want to nodify the assenbly |anguage files produced by
the MVMG BASIC COWILER, you should be aware of the follow ng
statements recogni zed by the assenbler (ASM OBJ):

.END - ends the assenbly

.FILE - chains two or nore files in an assenbly
= - defines a synbol

.BYTE - defines bytes of data stored in nenory
.VWORD - defines address constants

. DBYTE -defines word oriented data in nenory
>-defines the high byte of a nunber

<-defines the | ow byte of a nunber

COWPI LER ERRCRS

These are errors that occur during the conpilation of a BASIC
program due either to errors in the BASIC program itsef or due
to ATARI system errors. These are to be cantrasted with errors
that occur while running a conpiled program which are called
run-time errors.

SYSTEM ERRORS

Al system errors wll be displayed with the standard ATARI
error nunber. Please consult your BASIC or ATAR nmanual for a
nmore conplete description of these. In addition to these, the

followi ng systemerrors may al so occur:

SYSTEM ERROR- CAN' T RUN ASSEMBLER
COWPI LATI ON ABORTED
PRESS RETURN TO CONTI NUE

This nmeans that the MVG BASIC COWILER has encountered a bad
ASM OB) file. To solve this Problem recopy this file from your
mast er di sk or a backup.

BAD FREE TEMP
COWPI LATI ON ABORTED
PRESS RETURN TO CONTI NUE

This means that there is an internal conpiler inconsistency. To

MVG BASI C COWPI LER page 11

solve this, reboot and reconpile.

BAD | NPUT FRON BASI C FI LE
TOKEN = XXX

COWPI LATI ON ADORTED

PRESS RETURN TO CONTI NUE

This neans that the MG BASIC COWILER has encountered an
unexpected character in the BASIC program This nmay be caused
by a damaged disk. Try to execute the program from BASIC. |f it
wor ks correctly, performthe followi ng procedure:

LI ST "D: TEMP"
NEW

ENTER " D. TEMP"
SAVE " D: FI LENAME"

and reboot the conpiler to try again.

If any of these errors occur, place any disk containing the file
DUP.SYS in drive #1, and press RETURN, to relinquish control to
DCS.

PROGRAMM NG ERRORS

If your BASIC program has any of several errors in it
(di scussed bel ow), the MVMG BASIC COWILER wll display the
error nmessage, and then the lines:

SKI PPI NG STATEMENT
CONTI NUE OR ABORT (C/ A) ?

If you press C, the conpilation continues, thus allowing all
possi ble progranming errors in the BASIC program to be detected.
The MMG BASIC COWILER sinply skips the statement wth the
error, and continues the conpilation at the next BASIC statenent.
After conpiling the whole program the nmessage:

X ERROR(S) DETECTED

will be displayed if any errors were detected, where X is the total
nunber of errors. Since your program won't run anyway, the
conpiler stops here. Fix the BASIC program and then reboot the
MMG BASI C COWPI LER to reconpil e the corrected program

| f you press A in response to the CONTINUE OR ABORT
question, you will return to the DOS nenu.

MVG BASI C COWPI LER page 12

COWPI LE TI ME ERRORS

| LLEGALLY PLACED STATEMENT

Cause: The conpiler has encountered a COM Statenent after
non- COM st at enent s.

Solution: Mve all COM statenents to lines nunbered |ower than
all other non-COM st atenents.

I LLEGAL NEXT

Cause: A NEXT is trying to increment a loop variable which does
not match the variable in the corresponding FOR statenent, such
as FOR | =1 TO 10: NEXT J.

Solution: Correct the |oop variable.

DYNAM C DI N NOT ALLOWED

Cause: A DIN or COM St at enent must use constants, not
variables, to allocate string and array storage. Statenments such
as DIM X(A) or DIM A$(X) are not allowed.

Sol ution: Replace the variables with constants.

NEXT W THOUT FOR

Cause: The conpiler has encountered a NEXT statement wthout a
mat chi ng FOR St at enent .

Sol ution: Renove the NEXT or insert an appropriate FOR

RE- DI MENSI ON ERROR

Cause: A string or array is dinensioned nore than once.
Sol ution: Dinmension each string orarra, only once.

SYNTAX ERROR

Cause: There is a misspelling, a missing comm, orother error in
your BASI C program

Sol ution: Correct your BASIC program and reconpile.

CAN' T COWPI LE STATEMENT

Cause: The BASIC program contains a Statenent not supported by

the conpiler, such as LOAD.
Sol ution: Renpbve such statenents.

MVG BASI C COWPI LER page 13

UNDI MENSI ONED ARRAY

Cause: The conpiler has encountered a statement containing an
array or string before ist DIMor COM statenent.

Sol ution: Myve the DIM or COM statenent to a |line nunber |ower than
all lines which reference the array or string.

UNDEFI NED LI NE NUMBERS

Undefined I|ine nunbers are detected during PASS 3 by the
assenbl er For exanpl e, if your BASIC program contains the
followi ng |ine:

100 GOTO 1000

and there is no line 1000 in your BASIC program then the
assenbler wll respond by displaying the incorrect assenbler
instruction and the Iline nunber which is wundefined. For this
exanpl e, the display woul d read:

-->JMP L1000

/ ASM SYSTEM ERROR

| ASM REF: LI NE #->1000

/ ASHI UNRESOLVED LI NE NUVBER
CONTI NUE (Y/ N) ?

JMP L1000 is the assembler instruction and the line nunber is
1000. The assenbler is asking you if you want to continue the
assenbly. The first tine you conpile your program you should
continue so as to find any other errors, so type Y. The conpiled
program will not run correctly with these errors, so be sure to
correct them and reconpile before attenpting to run.

GOTQ GOsSUB VAR OR EXP

Cause: Your BASIC program contains a statenment of the form

GOTO A or GOSUB 1000+X

Solution: Replace these statements by the appropriate GOTO or

GOSUB. Frequently, you can replace such statements by such
l'ines:

MVG BASI C COWPI LER page 14

ON A GOTO 1000, 2000, 3000
or
ON X GOsuB 1000, 1010, 1020, 1030

ASSEMBLER SYSTEM ERROR

In addition to the normal ATAR system errors, you nay see
t he nmessage:

SYSTEM ERROR: 255

during assenbly. There are two possible causes for this error:

Cause #1: A reference is not defined in the system equates file,
usual | y because of a damaged file SYSEQU. ABC.

Cause #2: The assenbler cannot find the next assenbly |anguage
source code file. This wusually neans that the files have been
damaged since they were created during PASS 1, or that the
conpiler itself has been damaged.

Solution: Rerun your conpilation after recopying all system files
fromeither a backup or your master MVG BASI C COWPI LER di sk.

RUN Tl ME ERRCORS

Running a conpiled program my produce anyof the standard
ATARI errors as runtine errors. |In vyour conpiled program the
ATARI BASIC command TRAP will work just like it does in BASIC,
to assist you in debugging your program Furthernore, PEEK(195)
will return the type of error encountered, just Ilike it does
in BASIC. If an error is encountered which is not TRAPped, or if the
TRAP has been reset |ike TRAP 40000, then the run time package
in your conpiled program will print the address of the incorrect
instruction, and wll allow you to resune execution at a given
address when the run tine package pronpts you wth:

?Run addr ess>
This address should be a decimal address corresponding to the
address of a BASIC line nunber as shown in the line reference map
al ready discussed. |Instead of typing an address, you can also
enter one of the follow ng three options:

Type RETURN to rerun the program from the begi nning.

MVG BASI C COWPI LER page 15

Type DOS and RETURN to return control to DOCS.
Type C and RETURN to continue running the program beginning
fromthe |line where the error cccurred.

AN EXAMPLE OF A RUN TI ME ERROR

The following discussion shows how to determine the I|ine
nunber at which a run tinme error occurs. You should have a listing
of your BASIC program and a copy of the line reference map. We'll
use the follow ng programas an exanpl e:

100 REM

110 PEN TEST RUN Tl ME ERROR
120 PEN

130 PEN PROGRAM W LL GET AN
140 REM ERROR 11 WHE N | =0
150 REM

160 FOR 1 =10 TO 0 STEP -1
170 PRINT 10/1

180 NEXT 1

190 END

Wien this program is run from BASIC, the followng output is
produced:

.11111111
.25

. 42857142
. 66666666

.5
. 33333333

RPUOWNNRRERRR

0
ERROR- 11 IN LINE 170
READY

MVG BASI C COWPI LER page 16

The line reference map produced following the conpilation of this
program | ooks |i ke

LINE # 100 = 12811
LINE # 110 = 12811
LINE # 120 = 12811
LINE # 130 = 12811
LINE # 140 = 12111
LINE # 150 = 12811
LINE # 160 = 12811
LINE # 170 = 12825
LINE # 180 = 12849
LINE # 190 = 12882
LI NE # 99999 = 12918
and shows that the conpiled code for line 170, for exanple, lies

bet ween nenory | ocations 12825 and 12848, inclusive
Now, when we run the conpiled program is executed, t he
follow ng display is seen

.11111111
.25

. 42857142
. 66666666

.5
. 33333333

WNNR R R PR

10

ERROR- 11
Trace

12840

?Run addr ess>

The conmpiled program teils you that an error 11 was detected, and
then shows a trace of addresses which show the sequence of
subroutine calls which led to the error. In this case, no
subroutines were called, so the trace just shows the address
12840. Since this address is between the start and end address
for line nunmber 170 from our reference map, we know that line 170
contains the problem

MVG BASI C COWPI LER page 17

TABLE OF RUN TI ME ERRORS

ERROR NUMBER
06
11

18

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
168
161
162
163
164
165
166
167
168
169
170
171

DEFI NI TI ON

Qut of Data

Arithmetic error (overflow or
di vide by zero)

Invalid string character

Break key abort

| OCB al ready open

Nonexi st ent device

1OCB wite only

I nvalid conmmand

Device or file not open

Bad | OCB nunber

| OCB read only error

End of file

Truncated record

Devi ce tineout

Devi ce NAK

Serial bus error

Cursor out of range

Serial bus data frame overrun
Serial bus data frame checksum error
Devi ce done error

Read after wite conpare error
Function not i npl enented

I nsufficient RAM

Drive nunber error

Ton many files apen

Di sk ful

Unrecoverabl e systemdata |/0 error
File nunber m smatch

Fil e nunber error

PO NT data length error

File | ocked

Conmand invalid

Directory ful

File not found

PO NT invalid

MVG BASI C COWPI LER page 18

OPTI M ZI NG YOUR BASI C
PROGRAM

TI M NG CONSI DERATI ONS

Many progr anms require timng | oops, either to provi de
syrhronization or small pauses during portions of the program
Since conpiled progranms run nuch faster, you should change your
timng paranmeters wusing the following information as a guide.

Using the floating point package, your conpiled program wll run
about three times faster than your original BASI C program
whereas il you use the integer package the difference in speed is

approximately 15 fold. A better way to inplenent delays than
using timng loops is to use the ATARl real-tine clock, as in the
fol |l owi ng exanpl e.

100 DELAY=10: GOsSUB 500
110 ...
110 ...

111 TI ME=PEEK(20) +DELAY

510 | F PEEK(20)<>TI ME THEN GOTO
510

520 RETURN

Locations 18, 19, and 20 are the ATARl real-tinme clock. Location
20 is updated once each jiffy (1/60 of a second). Wen location 20
goes from 255 to O, location 19 is increnented by one, so |location
19 counts one wunit for about each 4.25 nminutes. Location 18 is

increnented once for each full cycle of location 19, and so it
counts one beat for about each 1083 mnutes. By witing the
subroutine at line 500 - 520 above to use any of these three

| ocations, delays of virtually any duration are possible, and wll
be the same in BASIC or in machine |anguage, in either integer or
floating point arithnetic.

HOW TO PRODUCE SVALLER COVPI LED PROGRANMS

The MG BASI C COWPI LER was desi gned to produce t he
fastest possible nachine code, as opposed to the shortest, Most
routines in your BASIC program wll take up substantially nore
space, in |he nmachine |anguage program than in the original BASIC
program One type of statenent which does not take up nore room

MVG BASI C COWPI LER page 19

in the final program is the GOSUB statenent. Therefore, if you
use subroutines for everything which is repetitious in your BASIC
program you'll dramatically cut down the size of the final machine
| anguage program produced.

BASIC instructions which take up large blocks of space in the
conpi | ed program i nclude mat hemat i cal cal cul ati ons such as
X*Y+Z, substring expressions, such as A$(l,J), references to
arrays, such as X(1), and FOR NEXT loops with a variable for the
step function, such as FOR |I=1 TO 100 STEP B, which takes al nost
3 times as nuch space in the conpiled program as the sane
statement with STEP 2, for exanple.

USE W TH DOUBLE DENSI TY

If you have at |east one true double density disk drive, you can
considerably increase the size of a BASIC program to conpile.
This program DCES NOT support t he ATARI 1050
density-and-a-half, only true double density drives. To operate
in double density, sinply boot up as described above, and select D
from the title page, to go to DOS. Once the DOS nenu appears,
use the L option of DOS to |oad and run a program cal l ed:

CHANGE

This program will change the density of your drive(s). Just follow
the pronpts of the program and turn your naster disk over at the
time indicated by the CHANGE program You wll then be in double
density, and can load the conpiler using the L option of DGCS,

| oading CVMP. OBJ fromthe double density side of the master disk.

MVG BASI C COWPI LER page 20

COMVANDS NOT RECOGNI CED
BY THE COWPI LER

Sever al BASIC keywords are not recoghized by the MG BASIC
COWPI LER, for obvious reasons. These are:

CONT
CLOAD
CSAVE
ENTER
LOAD
NEW
SAVE

In addition, FOR loops <can have only one NEXT statenent.
Fi nal ly, GOorT0, GOSUB, and RESTORE cannot be followed by a
variabl e, but nust be to constant |ine nunbers.

VEMORY NVAP

The system library |oads at $2400, and the user code starts at
$3200 and procedes wupward. The following diagram outlines the
menory configuration at run time of a program conpiled with the
MVG BASI C COWPI LER.

MVG BASI C COWPI LER page 21

$FFFF

0s ROM
DI SPLAY
RAM :
: <- VEND+FRE(0) =NEMTOP
FREE MEM -
- <-LINE 99999
TEMPORARY
STORAGE
<- VEND
. STRI NG STORAGE
: : <- SSEC
NOVERI C
STORAGE 1
: . <-VSEC
CONSTANT
STORAGE
<- CSE
DATA STORAGE
: <- DSEC
COVPI LED
PROGRAM -
© <~ $320A
VEND :
. <-$3208
SSEC :
. <-$3206
VSEC :
. <-$3204
CSEC :
- <-$3202
DSEC :
: <-$3200
RUN TIME -
. PACKAGE
$2400:
. DOS & SYSTEM :
. \ORKSPACE
$0:

The conpiled programentry paint is at $2400.

MVG BASI C COWPI LER page 22

RUN Tl ME LI BRARY MEMORY
USACE

ZERO PAGE

HEX DEC. DESCRI PTI ON

$88 128 REG STER SAVE AREA

$El 129 REG STER SAVE AREA

$82, $83 130, 131 GENERAL USE PO NTER

$84 132 CURRENT COLOR FOR PLOTS

$85 133 | OCB FOR CURRENT 1/0
$86 134 COVMAND NUMBER FOR Xl O CALL
$88, $89 136, 137 PO NTER TO NEXT DATA STATEMENT

$8C, $8D 148, 141 STRI NG PO NTER 1

$90, $91 144, 145 STRI NG PO NTER 2

$92, $93 146, 147 ADDRESS FOR USR CALL

$96, $97 150, 151 TRAP VECTOR

$98 152 TAB COUNTER

$99 153 GENERAL USE COUNTER

$9A 154 STACK PO NTER SAVE

$9B 155 GENERAL USE FLAG BYTE

$BA, $BB 106, 187 STOP ADDRESS OF ERROR

$C3 195 ERROR NUMBER

$C9 291 PRI NT TAB W DTH

$D4- $D9 212- 217 PSEUDO REG STER 0

111-115 214-111 PSEUDO REG STER 1

$F2 242 FLOATI NG PO NT USAGE

$F3, $F4 243, 244 PO NTER TO | NPUT BUFFER

$FB 251 RADI AN/ DEGREE FLAG (0=RAD, 6=DEG)
$FC, $FD 252, 253 PO NTER TO FLOATI NG PO NT NUMBER

NON ZERO PAGE

$480- $4FF 1152-1279 LI NE | NPUT BUFFER & FI LE NAME STORAGE
$508- $57F 1288- 1407 FLOATI NG PO NT BUFFER

MVG BASI C COWPI LER page 23

| NTERNAL NUMERI C
REPRESENTATI ON.

FLOATI NG PO NT FORVAT

Floating point nunbers are stored using the ATARI 0S floating
point format. Each floating point nunber is stored in siXx
consecutive bytes. The sign of the nunber and a 64 excess power
of 100 are stored in the first byte. The following five bytes
contain binary coded decinmal digits, two per byte. This gives
10-digit floating point precision.

| NTEGER FORNMAT

Integers are 16 bits and stored in two consecutive bytes in
menory. The bytes are stored in order of the npst significant
byt e to the least significant byte. This is the opposite of the
order in which the 6502 processor addresses bytes. This order
was chosen to present a wuniform location of the sign bit to the
conpiler and run tine libraries, thus allowing the conpiler to
produce code which is independent of the arithnetic option.

COWERCI AL SALE OF
COWVPI LEI D PROGRAMS

No royalty fees are required to sell prograns conpiled wth
the MMG BASIC COWILER W do require that vyou place the
followi ng notice in your program docunentation:

This program was conpiled wusing the MW BASIC COWILER
for the ATARI.

MVG BASI C COWPI LER page 24

9% L L0 [N ‘0Joguow
IC} X0g Od
DJDMOS OIW DWW

	MMG Basic Compiler
	Intro
	Table of Contents
	Introduction
	Gettig started
	For use with One Disk Drive
	For use with Two Disk Drives

	Compiling your program
	How the MMG BASIC COMPILER Works

